////// Science for a better life

Melhoramento
Publicações notáveis

Os OGMs podem causar alergias?

Nesta revisão, os autores detalham as várias etapas no desenvolvimento de um transgênico que levam em consideração o seu potencial alergênico. Além disso, realizam uma revisão sistemática dos trabalhos sobre o tema. Os dados mostram que as safras geneticamente modificadas (GM) não são mais alergênicas do que as não modificadas.

Além disso, não foram encontradas evidências de que indivíduos que não são alérgicos aos alimentos convencionais desenvolvam alergia ou tenham um aumento no risco em desenvolver alergia pelo consumo de culturas GM.

Como as novas variedades são criadas mantendo os alimentos seguros

O processo de seleção de plantas de alto rendimento para alimentos, ração e fibras data de mais de 10.000 anos e foi substancialmente refinado ao longo do século passado. Embora os riscos percebidos representados pelas culturas geneticamente modificadas (GM) tenham sido extensivamente abordados, os níveis existentes de toxinas vegetais que ocorrem naturalmente nas culturas alimentares têm recebido muito menos atenção. Esta revisão analisa como os melhoristas (breeders) usam práticas convencionais de melhoramento para desenvolver novas variedades de culturas alimentares seguras.

O longo processo por trás de um OGM


Neste artigo, os autores detalham o processo de obtenção de novas variedades de cultivos por meio de melhoramento convencional e técnicas de engenharia genética, também informando como o próprio programa de melhoramento elimina características indesejadas. São apresentados dados de programas de melhoramento de milho, tanto convencionais quanto por meio de engenharia genética.





Novas técnicas de criação, ao serviço de melhores cereais

Esta edição especial da Cereal Chemistry inclui uma série de artigos focados em tecnologias inovadoras de melhoramento de precisão (New Breeding Techniques) para cereais. Essas técnicas serão capazes de acelerar a obtenção de variedades mais produtivas, a rentabilidade para o setor de cereais e o desenvolvimento de novos produtos que trazem benefícios à saúde dos consumidores.






Todas as publicações
de Melhoramento

Rogers, A. R., Bian, Y., Krakowsky, M., Peters, D., Turnbull, C., Nelson, P., & Holland, J. B. (2022). Genomic prediction for the Germplasm Enhancement of Maize project. The Plant Genome. https://doi.org/10.1002/tpg2.20267
Sie, E. K., Oteng-Frimpong, R., Kassim, Y. B., Puozaa, D. K., Adjebeng-Danquah, J., Masawudu, A. R., Ofori, K., Danquah, A., Cazenave, A. B., Hoisington, D., Rhoads, J., & Balota, M. (2022). RGB-image method enables indirect selection for leaf spot resistance and yield estimation in a groundnut breeding program in Western Africa. Frontiers in Plant Science, 13, 957061. https://doi.org/10.3389/fpls.2022.957061
Labroo, M. R., Endelman, J. B., Gemenet, D. C., Werner, C. R., Gaynor, R. C., & Covarrubias-Pazaran, G. E. (2022). Clonal breeding strategies to harness heterosis: insights from stochastic simulation [Preprint]. Genetics. https://doi.org/10.1101/2022.07.01.497810
Wang, H., Campbell, B., Happ, M., McConaughy, S., Lorenz, A., Amundsen, K., Song, Q., Pantalone, V., & Hyten, D. (2022). Development of Molecular Inversion Probes for Soybean Progeny Genomic Selection Genotyping [Preprint]. Genomics. https://doi.org/10.1101/2022.05.03.490091
Alpuerto, J. B. B., Samonte, S. O. P. B., Sanchez, D. L., Croaker, P. A., Wang, Y.-J., Wilson, L. T., Christensen, E. F., Tabien, R. E., Yan, Z., & Thomson, M. J. (2022). Genomic Association Mapping of Apparent Amylose and Protein Concentration in Milled Rice. Agronomy, 12(4), 857. https://doi.org/10.3390/agronomy12040857
Natukunda, M. I., Mantilla-Perez, M. B., Graham, M. A., Liu, P., & Salas-Fernandez, M. G. (2022). Dissection of canopy layer-specific genetic control of leaf angle in Sorghum bicolor by RNA sequencing. BMC Genomics, 23(1), 95. https://doi.org/10.1186/s12864-021-08251-4
Kouranov, A., Armstrong, C., Shrawat, A., Sidorov, V., Huesgen, S., Lemke, B., Boyle, T., Gasper, M., Lawrence, R., & Yang, S. (2022). Demonstration of targeted crossovers in hybrid maize using CRISPR technology. Communications Biology, 5(1), 53. https://doi.org/10.1038/s42003-022-03004-9
Sanchez, D. L., Samonte, S. O. PB., Alpuerto, J. B. B., Croaker, P. A., Morales, K. Y., Yang, Y., Wilson, L. T., Tabien, R. E., Yan, Z., Thomson, M. J., & Septiningsih, E. M. (2022). Phenotypic variation and genome-wide association studies of main culm panicle node number, maximum node production rate, and degree-days to heading in rice. BMC Genomics, 23(1), 390. https://doi.org/10.1186/s12864-022-08629-y
De Beer, B., Villacis-Perez, E., Khalighi, M., Saalwaechter, C., Vandenhole, M., Jonckheere, W., Ismaeil, I., Geibel, S., Van Leeuwen, T., & Dermauw, W. (2022). QTL mapping suggests that both cytochrome P450-mediated detoxification and target-site resistance are involved in fenbutatin oxide resistance in Tetranychus urticae. Insect Biochemistry and Molecular Biology, 145, 103757. https://doi.org/10.1016/j.ibmb.2022.103757
Rios, E. F., Andrade, M. H. M. L., Resende, M. F. R., Kirst, M., de Resende, M. D. V., de Almeida Filho, J. E., Gezan, S. A., & Munoz, P. (2021). Genomic prediction in family bulks using different traits and cross-validations in pine. G3 Genes|Genomes|Genetics, 11(9), jkab249. https://doi.org/10.1093/g3journal/jkab249
Hoang, X. L. T., Chuong, N. N., Hoa, T. T. K., Doan, H., Van, P. H. P., Trang, L. D. M., Huyen, P. N. T., Le, D. T., Tran, L.-S. P., & Thao, N. P. (2021). The Drought-Mediated Soybean GmNAC085 Functions as a Positive Regulator of Plant Response to Salinity. International Journal of Molecular Sciences, 22(16), 8986. https://doi.org/10.3390/ijms22168986
Tomar, V., Dhillon, G. S., Singh, D., Singh, R. P., Poland, J., Joshi, A. K., Tiwari, B. S., & Kumar, U. (2021). Elucidating SNP-based genetic diversity and population structure of advanced breeding lines of bread wheat ( Triticum aestivum L . ). PeerJ, 9, e11593. https://doi.org/10.7717/peerj.11593
Mathew, B., Léon, J., Dadshani, S., Pillen, K., Sillanpää, M. J., & Naz, A. A. (2021). Importance of correcting genomic relationships in single-locus QTL mapping model with an advanced backcross population. G3 Genes|Genomes|Genetics, 11(6), jkab105. https://doi.org/10.1093/g3journal/jkab105
Rubio, M., Martínez-García, P. J., Nikbakht-Dehkordi, A., Prudencio, Á. S., Gómez, E. M., Rodamilans, B., Dicenta, F., García, J. A., & Martínez-Gómez, P. (2021). Gene Expression Analysis of Induced Plum pox virus (Sharka) Resistance in Peach (Prunus persica) by Almond (P. dulcis) Grafting. International Journal of Molecular Sciences, 22(7), 3585. https://doi.org/10.3390/ijms22073585
Kumar, H. (2021). A new source of resistance in rice against Brown planthopper, Nilaparvata lugens Stal (Homoptera: Delphacidae) and elucidation of its inheritance using phenotypic selections under artificial infestations at seedling and reproductive stages of the crop. Cereal Research Communications. https://doi.org/10.1007/s42976-021-00158-w
da Silva Pereira, G., Mollinari, M., Schumann, M. J., Clough, M. E., Zeng, Z.-B., & Yencho, G. C. (2021). The recombination landscape and multiple QTL mapping in a Solanum tuberosum cv. ’Atlantic’-derived F1 population. Heredity. https://doi.org/10.1038/s41437-021-00416-x
Yang, Z., Li, N., Kitano, T., Li, P., Spindel, J. E., Wang, L., Bai, G., Xiao, Y., McCouch, S. R., Ishihara, A., Zhang, J., Yang, X., Chen, Z., Wei, J., Ge, H., Jander, G., & Yan, J. (2021). Genetic mapping identifies a rice naringenin O-glucosyltransferase that influences insect resistance. The Plant Journal: For Cell and Molecular Biology. https://doi.org/10.1111/tpj.15244
Gazala, P., Gangappa, E., Ramesh, S., & Swamy, D. (2021). Comparative Breeding potential of two crosses for response to late wilt disease (LWD) in maize (Zea mays L.). Genetic Resources and Crop Evolution. https://doi.org/10.1007/s10722-021-01150-3
Dadshani, S., Mathew, B., Ballvora, A., Mason, A. S., & Léon, J. (2021). Detection of breeding signatures in wheat using a linkage disequilibrium-corrected mapping approach. Scientific Reports, 11(1), 5527. https://doi.org/10.1038/s41598-021-85226-1
Moseley, D. O., Trappe, J. M., Milla‐Lewis, S. R., Chandra, A., Kenworthy, K. E., Liu, W., & Patton, A. J. (2021). Characterizing the growth and winter survival of commercially available and experimental genotypes of St. Augustinegrass. Crop Science, csc2.20445. https://doi.org/10.1002/csc2.20445
Thudi, M., Palakurthi, R., Schnable, J. C., Chitikineni, A., Dreisigacker, S., Mace, E., Srivastava, R. K., Satyavathi, C. T., Odeny, D., Tiwari, V. K., Lam, H.-M., Hong, Y. B., Singh, V. K., Li, G., Xu, Y., Chen, X., Kaila, S., Nguyen, H., Sivasankar, S., … Varshney, R. K. (2021). Genomic resources in plant breeding for sustainable agriculture. Journal of Plant Physiology, 257, 153351. https://doi.org/10.1016/j.jplph.2020.153351
Witek, K., Lin, X., Karki, H. S., Jupe, F., Witek, A. I., Steuernagel, B., Stam, R., van Oosterhout, C., Fairhead, S., Heal, R., Cocker, J. M., Bhanvadia, S., Barrett, W., Wu, C.-H., Adachi, H., Song, T., Kamoun, S., Vleeshouwers, V. G. A. A., Tomlinson, L., … Jones, J. D. G. (2021). A complex resistance locus in Solanum americanum recognizes a conserved Phytophthora effector. Nature Plants, 7(2), 198–208. https://doi.org/10.1038/s41477-021-00854-9
Kamal, N., Nourbakhsh, S. S., & Cramer, C. S. (2021). Reduced Iris Yellow Spot Symptoms through Selection within Onion Breeding Lines. Horticulturae, 7(2), 12. https://doi.org/10.3390/horticulturae7020012
Merieux, N., Cordier, P., Wagner, M.-H., Ducournau, S., Aligon, S., Job, D., Grappin, P., & Grappin, E. (2021). ScreenSeed as a novel high throughput seed germination phenotyping method. Scientific Reports, 11(1), 1404. https://doi.org/10.1038/s41598-020-79115-2
Bhatta, M., Sandro, P., Smith, M. R., Delaney, O., Voss-Fels, K. P., Gutierrez, L., & Hickey, L. T. (2021). Need for speed: manipulating plant growth to accelerate breeding cycles. Current Opinion in Plant Biology, 60, 101986. https://doi.org/10.1016/j.pbi.2020.101986
Lozada, D. N., Bhatta, M., Coon, D., & Bosland, P. W. (2021). Single nucleotide polymorphisms reveal genetic diversity in New Mexican chile peppers (Capsicum spp.). BMC Genomics, 22(1), 356. https://doi.org/10.1186/s12864-021-07662-7
Valliyodan, B., Brown, A. V., Wang, J., Patil, G., Liu, Y., Otyama, P. I., Nelson, R. T., Vuong, T., Song, Q., Musket, T. A., Wagner, R., Marri, P., Reddy, S., Sessions, A., Wu, X., Grant, D., Bayer, P. E., Roorkiwal, M., Varshney, R. K., … Nguyen, H. T. (2021). Genetic variation among 481 diverse soybean accessions, inferred from genomic re-sequencing. Scientific Data, 8(1), 50. https://doi.org/10.1038/s41597-021-00834-w
Mohammed, S., Huggins, T., Mason, E., Beecher, F., Chick, C., Sengodon, P., Paudel, A., Ibrahim, A., Tilley, M., & Hays, D. (2021). Mapping the genetic loci regulating leaf epicuticular wax, canopy temperature, and drought susceptibility index in Triticum aestivum. Crop Science, 61(4), 2294–2305. https://doi.org/10.1002/csc2.20458
Purugganan, M. D., & Jackson, S. A. (2021). Advancing crop genomics from lab to field. Nature Genetics, 53(5), 595–601. https://doi.org/10.1038/s41588-021-00866-3
Ballén‐Taborda, C., Chu, Y., Ozias‐Akins, P., Timper, P., Jackson, S. A., Bertioli, D. J., & Leal‐Bertioli, S. C. M. (2021). Validation of resistance to root‐knot nematode incorporated in peanut from the wild relative Arachis stenosperma. Agronomy Journal, 113(3), 2293–2302. https://doi.org/10.1002/agj2.20654
Swarup, S., Cargill, E. J., Crosby, K., Flagel, L., Kniskern, J., & Glenn, K. C. (2021). Genetic diversity is indispensable for plant breeding to improve crops. Crop Science, 61(2), 839–852. https://doi.org/10.1002/csc2.20377
Tomar, V., Dhillon, G. S., Singh, D., Singh, R. P., Poland, J., Joshi, A. K., Tiwari, B. S., & Kumar, U. (2021). Elucidating SNP-based genetic diversity and population structure of advanced breeding lines of bread wheat (Triticum aestivum L.). PeerJ. Scopus. https://doi.org/10/gk9ttc
Carcedo, A. J. P., Cejas, E., & Gambin, B. L. (2021). Adapting sorghum sowing date and genotype maturity to seasonal rainfall variation in a temperate region. In Silico Plants, 3(1). Scopus. https://doi.org/10/gk9ttk
Zhao, N., Ding, X., Lian, T., Wang, M., Tong, Y., Liang, D., An, Q., Sun, S., Jackson, S. A., Liu, B., & Xu, C. (2020). The Effects of Gene Duplication Modes on the Evolution of Regulatory Divergence in Wild and Cultivated Soybean. Frontiers in Genetics, 11, 601003. https://doi.org/10.3389/fgene.2020.601003
Mantilla-Perez, M. B., Bao, Y., Tang, L., Schnable, P. S., & Salas-Fernandez, M. G. (2020). Toward “Smart Canopy” Sorghum: Discovery of the Genetic Control of Leaf Angle Across Layers. Plant Physiology, 184(4), 1927–1940. https://doi.org/10.1104/pp.20.00632
Varga-László, E., Puskás, K., Varga, B., Farkas, Z., Veisz, O., & Vida, G. (2020). Analysis of Genetic Factors Defining Head Blight Resistance in an Old Hungarian Wheat Variety-Based Mapping Population. Agronomy, 10(8), 1128. https://doi.org/10.3390/agronomy10081128
Wu, M.-F., Goldshmidt, A., Ovadya, D., & Larue, H. (2020). I am all ears: Maximize maize doubled haploid success by promoting axillary branch elongation. Plant Direct, 4(5), e00226. https://doi.org/10.1002/pld3.226
Costa Silva Neta, I., Vilela de Resende Von Pinho, É., de Abreu, V. M., Rezende Vilela, D., Santos, M. C., Oliveira Dos Santos, H., Diniz Cabral Ferreira, R. A., Garcia Von Pinho, R., & Coelho de Castro Vasconcellos, R. (2020). Gene expression and genetic control to cold tolerance during maize seed germination. BMC Plant Biology, 20(1), 188. https://doi.org/10/gk3t84
Tucker, S. L., Dohleman, F. G., Grapov, D., Flagel, L., Yang, S., Wegener, K. M., Kosola, K., Swarup, S., Rapp, R. A., Bedair, M., Halls, S. C., Glenn, K. C., Hall, M. A., Allen, E., & Rice, E. A. (2020). Evaluating maize phenotypic variance, heritability, and yield relationships at multiple biological scales across agronomically relevant environments. Plant, Cell & Environment, 43(4), 880–902. https://doi.org/10.1111/pce.13681
Fu, F., Zhang, X., Liu, F., Peng, G., Yu, F., & Fernando, D. (2020). Identification of resistance loci in Chinese and Canadian canola/rapeseed varieties against Leptosphaeria maculans based on genome-wide association studies. BMC Genomics, 21(1), 501. https://doi.org/10.1186/s12864-020-06893-4
Sserumaga, J. P., Makumbi, D., Assanga, S. O., Mageto, E. K., Njeri, S. G., Jumbo, B. M., & Bruce, A. Y. (2020). Identification and diversity of tropical maize inbred lines with resistance to common rust ( Puccinia sorghi Schwein). Crop Science, 60(6), 2971–2989. https://doi.org/10.1002/csc2.20345
Clovis, L. R., Scapim, C. A., Pinto, R. J. B., Vivas, M., de Almeida Filho, J. E., & do Amaral Júnior, A. T. (2020). Yield stability analysis of maize hybrids using the self-organizing map of Kohonen. Euphytica, 216(10), 161. https://doi.org/10.1007/s10681-020-02683-x
Ozdemir, F., Koc, N. K., Paulitz, T., Nicol, J. M., Schroeder, K. L., & Poole, G. (2020). Determination of fusarium crown rot resistance in wheat to Fusarium culmorum and Fusarium pseudogramineaum using real time PCR. Crop Protection, 135, 105204. https://doi.org/10.1016/j.cropro.2020.105204
Achard, F., Butruille, M., Madjarac, S., Nelson, P. T., Duesing, J., Laffont, J., Nelson, B., Xiong, J., Mikel, M. A., & Smith, J. S. C. (2020). Single nucleotide polymorphisms facilitate distinctness‐uniformity‐stability testing of soybean cultivars for plant variety protection. Crop Science, 60(5), 2280–2303. https://doi.org/10.1002/csc2.20201
Pinho Morais, P. P., Akdemir, D., Braatz de Andrade, L. R., Jannink, J., Fritsche‐Neto, R., Borém, A., Couto Alves, F., Hottis Lyra, D., & Granato, Í. S. C. (2020). Using public databases for genomic prediction of tropical maize lines. Plant Breeding, 139(4), 697–707. https://doi.org/10.1111/pbr.12827
Kaiser, N., Douches, D., Dhingra, A., Glenn, K. C., Herzig, P. R., Stowe, E. C., & Swarup, S. (2020). The role of conventional plant breeding in ensuring safe levels of naturally occurring toxins in food crops. Trends in Food Science & Technology, 100, 51–66. https://doi.org/10.1016/j.tifs.2020.03.042
Schwantes, I. A., do Amaral Júnior, A. T., Almeida Filho, J. E., Vivas, M., Silva Cabral, P. D., Gonçalves Guimarães, A., Lima e Silva, F. H., Araújo Diniz Santos, P. H., Gonzaga Pereira, M., Pio Viana, A., Ferreira Pena, G., & Alves Ferreira, F. R. (2020). Genomic selection helps accelerate popcorn population breeding. Crop Science, 60(3), 1373–1385. https://doi.org/10.1002/csc2.20112
Fischer, J., Nemali, K., Raychaudhuri, A., Corbin, J., Shirrell, T., O’Connor, D., Barberis, L., Klug, K., Li, X., Singh, D., Zapata, F., & Rogan, G. J. (2020). Yield component responses of biotechnology‐derived drought tolerant maize under controlled environment conditions. Agricultural & Environmental Letters, 5(1). https://doi.org/10.1002/ael2.20007
Tomar, V., Singh, D., Dhillon, G. S., Singh, R. P., Poland, J., Joshi, A. K., Singh, P. K., Bhati, P. K., Kumar, S., Rahman, M., Tiwari, B. S., & Kumar, U. (2020). New QTLs for Spot Blotch Disease Resistance in Wheat (Triticum aestivum L.) Using Genome-Wide Association Mapping. Frontiers in Genetics, 11, 613217. https://doi.org/10.3389/fgene.2020.613217
Pretini, N., Terrile, I. I., Gazaba, L. N., Donaire, G. M., Arisnabarreta, S., Vanzetti, L. S., & González, F. G. (2020). A comprehensive study of spike fruiting efficiency in wheat. Crop Science, 60(3), 1541–1555. Scopus. https://doi.org/10/ghmxbg

Isenção de responsabilidade

As referências citadas são obtidas por meio de serviços de pesquisa bibliográfica, com base na afiliação do autor à Bayer. Isso pode levar esporadicamente a casos em que as postagens de autores que ingressaram na Bayer recentemente são referenciadas, mesmo que o trabalho de pesquisa tenha sido realizado na instituição ou organização anterior do autor.

Algumas publicações endossadas ou patrocinadas pela Bayer, mas desenvolvidas / escritas de forma independente e / ou não incluem um autor da Bayer, podem não ser mencionadas.

Por motivos de direitos autorais, o acesso ao texto completo das publicações depende dos direitos de acesso do indivíduo ou do periódico.

 

Rolar para o topo